Abstract
This study aims to understand the molecular and supramolecular transformations of wheat endosperm biopolymers during bread-making, and their implications to fabricate self-standing films from stale white bread. A reduction in the Mw of amylopectin (51.8 × 106 vs 425.1 × 106 g/mol) and water extractable arabinoxylans WEAX (1.79 × 105 vs 7.63 × 105 g/mol), and a decrease in amylose length (245 vs 748 glucose units) was observed after bread-baking. The chain length distribution of amylopectin and the arabinose-to-xylose (A/X) ratio of WEAX remained unaffected during bread-making, suggesting that heat- or/and shear-induced chain scission is the mechanism responsible for molecular fragmentation. Bread-making also resulted in more insoluble cell wall residue, featured by water unextractable arabinoxylan of lower A/X and Mw, along with the formation of a gluten network. Flexible and transparent films with good light-blocking performance (<30 % transmittance) and DPPH-radical scavenging capacity (~8.5 %) were successfully developed from bread and flour. Bread films exhibited lower hygroscopicity, tensile strength (2.7 vs 8.5 MPa) and elastic modulus (67 vs 501 MPa) than flour films, while having a 6-fold higher elongation at break (10.0 vs 61.2 %). This study provides insights into the changes in wheat biopolymers during bread-making and sets a precedent for using stale bread as composite polymeric materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.