Abstract

December 2014 marked the 30th year anniversary of Bhopal gas tragedy. This sudden and accidental leakage of deadly poisonous methyl isocyanate (MIC) gas instigated research efforts to understand the nature, severity of health damage and sufferings of 570 000 ailing survivors of this tragedy. In a decade-long period, our systematic laboratory investigations coupled with long-term molecular surveillance studies have comprehensively demonstrated that the risk of developing an environmental associated aberrant disease phenotype, including cancer, involves complex interplay of genomic and epigenetic reprogramming. These findings poised us to translate this knowledge into an investigative framework of "molecular biodosimetry" in a strictly selected cohort of MIC exposed individuals. A pragmatic cancer risk-assessment strategy pursued in concert with a large-scale epidemiological study might unfold molecular underpinnings of host-susceptibility and exposureresponse relationship. The challenges are enormous, but we postulate that the study will be necessary to establish a direct initiation-promotion paradigm of environmental carcinogenesis. Given that mitochondrial retrograde signaling-induced epigenetic reprogramming is apparently linked to neoplasticity, a cutting-edge tailored approach by an expert pool of biomedical researchers will be fundamental to drive these strategies from planning to execution. Validating the epigenomic signatures will hopefully result in the development of biomarkers to better protect human lives in an overburdened ecosystem, such as India, which is continuously challenged to meet population demands. Besides, delineating the mechanistic links between MIC exposure and cancer morbidity, our investigative strategy might help to formulate suitable regulatory policies and measures to reduce the overall burden of occupational and environmental carcinogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.