Abstract
We describe and analyze in depth a series of molecular beam scattering experiments, first reported by Aquilanti et al. (Angew. Chemie Int. Ed. 2005, 44, 2356.), proving that a measurable bond stabilization component beyond the van-der-Waals forces is present in the prototypal hydrophobic interaction of water with the noble gases (Ng). The experimental integral cross-section data, exhibiting a fully resolved "glory" interference pattern in the velocity dependence, are here quantitatively analyzed and characterized employing a recently proposed model potential. The stabilization component of the water-Ng bond has recently been attributed, through very accurate theoretical calculations and an unambiguous, model-free analysis of the electron density displacement, to a net electron transfer taking place from Ng to H(2)O. We review the theoretical analysis and discuss additional computational results, comparing them to experiment, that clarify the effect of charge transfer on the interaction energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.