Abstract

The molecular-beam epitaxy of InGaAs/InAlAs/AlAs structures for heterobarrier varactors is studied and optimized. The choice of the substrate-holder temperature, growth rate and III/V ratio in the synthesis of individual heterostructure regions, the thickness of AlAs inserts and barrier-layer quality are critical parameters to achieve the optimal characteristics of heterobarrier varactors. The proposed triple-barrier structures of heterobarrier varactors with thin InGaAs strained layers immediately adjacent to an InAlAs/AlAs/InAlAs heterobarrier, mismatched with respect to the InP lattice constant at an AlAs insert thickness of 2.5 nm, provides a leakage current density at the level of the best values for heterobarrier varactor structures with 12 barriers and an insert thickness of 3 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.