Abstract

Archaea remain important players in global biogeochemical cycles worldwide, including in the highly productive mangrove estuarine ecosystems. In the present study, we have explored the diversity, distribution, and function of the metabolically active fraction of the resident archaeal community of the Sundarban mangrove ecosystem, using both culture-independent and culture-dependent approaches. To evaluate the diversity and distribution pattern of the active archaeal communities, RNA based analysis of the 16S rRNA gene was performed on an Illumina platform. The active Crenarchaeal community was observed to remain constant while active Euryarchaeal community underwent considerable change across the sampling sites depending on varying anthropogenic factors. Haloarchaea were the predominant group in hydrocarbon polluted sediments, leading us to successfully isolate eleven p-hydroxybenzoic acid degrading haloarchaeal species. The isolates could also survive in benzoic acid, naphthalene, and o-phthalate. Quantitative estimation of p-hydroxybenzoic acid degradation was studied on select isolates, and their ability to reduce COD of polluted saline waters of Sundarban was also evaluated. To our knowledge, this is the first ever study combining culture-independent (Next Generation sequencing and metatranscriptome) and culture-dependent analyses for an assessment of archaeal function in the sediment of Sundarban.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.