Abstract

The study was aimed at establishing storage stability indices of a traditional smoke dried product kamsa, produced from beef. The sample was produced using a standardized method and stored over a period of six months. Data for sorption studies was generated between the temperature ranges of 33.8oC to 50oC for adsorption and desorption using the gravimetric method. The data was analyzed using the Guggeinheim Anderson de Boer (GAB) and the Brunaeur Emmett Teller (BET) model equations. A nonlinear regression analysis method was used to evaluate the constants of the sorption equations. From the results using the GAB model, the monolayer moisture content (Mo) decreased from 0.021 to 0.008gH2O/g solids; the value of the constant K, increased from 0.587 to 1.052; and the value of CG decreased from 2.481 to 2.154. For desorption, the value of Mo decreased from 0.021 to 0.004g H2O/g solids; K increased from 0.587 to 1.035; CG increased from 2.173 to 2.646. The model gave low percent standard error values. The correlation coefficient (R) values obtained for both adsorption and desorption ranged from 0.998 to 0.999, and 0.991 to 1.000, respectively. The Mo values using the BET model at 33.8oC for both adsorption and desorption were 0.055, 0.055, 0.052, 0.049, 0.058, 0.055g H2O/g solid; and 0.057, 0.057, 0.052, 0049, 0.052, 0.057g H2O/g solid, respectively. At 50oC, the adsorption and desorption monolayer moisture values were 0.039, 0.047, 0.049, 0.049, 0.052, 0.058 gH2O/g solids; and 0.054, 0.047, 0.052, 0.052, 0.039, 0.052 gH2O/g solids, respectively. The study concluded that, the GAB model was more suitable in describing the sorption characteristics of Kamsa within the prescribed water activity and temperature ranges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.