Abstract

The main objective of the present study is to experimentally investigate the moist air condensation behavior subject to hydrophilic and superhydrophobic surface with a much broader operating conditions such as different relative humidities (RH = 40 – 85%) and degree of subcooling (ΔTsub= 1 – 16 K). The flow visualization of condensation behavior showed that the main condensate departure mechanism of the hydrophilic surfaces is gravity-driven sliding. In contrast, the primary mechanisms for the superhydrophobic surfaces are direct jumping and bounced-jumping caused by the coalescence induced phenomena. The superhydrophobic surfaces yielded a maximum of 36% improvement in heat transfer coefficient at 85% relative humidity over the hydrophilic surfaces, while the enhancement is about 16% for 60% and 40% relative humidities. Similarly, the maximum heat transfer coefficient of 37 W m-2K−1 is attained at the subcooling temperature of 16 K, and it is reduced to 31 W m-2K−1 and 20 W m-2K−1 respectively when the subcooling is reduced to 6 K and 1 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.