Abstract

Owing to the satisfactory properties such as high specific surface area, finely tunable chemical composition, large yet adjustable pore sizes, and diverse architecture, metal-organic frameworks (MOFs) have the potential to be used as a stable, efficient, reusable and protective biomacromolecule immobilization carrier in capillary electrophoresis. Herein, a novel immobilized receptor open-tubular affinity capillary electrochromatography (OT-ACEC) strategy was developed for the first time to rapidly investigate the interactions between a set of drugs and bovine serum albumin (BSA). To further increase the amount of immobilized BSA and maintain the bioactivity of BSA, BSA was immobilized on the inner capillary surface by using polydopamine (PDA) as the adhesion layer and surface functionalization agent, a MOF namely dresden university of technology-5 (DUT-5) as supporting platform and biomacromolecule immobilization carrier, respectively. The amount of immobilized BSA on the capillary surface of the BSA@capillary and the PDA/MOFs/BSA@capillary column are separately calculated as 0.00756 nmol and 0.01812 nmol. Besides, the PDA/MOFs/BSA@capillary column was applied to investigate the interactions between BSA and flavonoids, fluoroquinolones. Under the optimal interaction conditions, three flavonoids and three fluoroquinolones are able to achieve baseline separation in the PDA/MOFs/BSA@capillary column (with resolution values of three flavonoids, 5.78 and 4.13; three fluoroquinolones, 1.72 and 1.68). The PDA/MOFs/BSA@capillary column shows good stability and reproducibility over 100 runs (relative standard deviation (RSD)<5%). In addition, the normalized capacity factor (KRCE) in this method replaced the binding constant and was used as an evaluation index to fast predict the activities of 20 drugs, some of which have not yet been reported for their interactions with BSA. Spectroscopy and molecular docking further illuminated the binding mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.