Abstract

In modulo scheduling, the number of clock cycles between successive inputs (the initiation interval, II) is traditionally an integer, but in this paper, we explore the benefits of allowing it to be a rational number. This rational II can be interpreted as the average number of clock cycles between successive inputs. As the minimum rational II can be less than the minimum integer II, this translates to higher throughput. We formulate rational-II modulo scheduling as an integer linear programming (ILP) problem that is able to find latency-optimal schedules for a fixed rational II. We have applied our scheduler to a standard benchmark of hardware designs, and our results demonstrate a significant speedup compared to state-of-the-art integer-II and rational-II formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.