Abstract

We classify parallelizable noncommutative manifold structures on finite sets of small size in the general formalism of framed quantum manifolds and vielbeins introduced previously [S. Majid, Commun. Math. Phys. 225, 131 (2002)]. The full moduli space is found for ⩽3 points, and a restricted moduli space for 4 points. Generalized Levi–Cività connections and their curvatures are found for a variety of models including models of a discrete torus. The topological part of the moduli space is found for ⩽9 points based on the known atlas of regular graphs. We also remark on aspects of quantum gravity in this approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.