Abstract

The efficacy of antiretroviral agents approved for the treatment of HIV-1 infection is limited by the virus's ability to develop resistance. As such there is an urgent need for new ways of thinking about anti-HIV drug development, and accordingly novel viral and cellular targets critical to HIV-1 replication need to be explored and exploited. The retroviral RNA genome encodes for three enzymes essential for viral replication: HIV-1 protease (PR), HIV-1 reverse transcriptase (RT) and HIV-1 integrase (IN). The enzymatic functioning of each of these enzymes is entirely dependent on their oligomeric structures, suggesting that inhibition of subunit-subunit assembly or modulation of their quaternary structures provide alternative targets for HIV-1 inhibition. This review discusses the recent advances in the design and/or identification of synthetic peptides and small molecules that specifically target the subunit-subunit interfaces of these retroviral enzymes, resulting in the inactivation of their enzymatic functioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.