Abstract

A panel of human CD4+ T cell clones was utilized to dissect and analyze the biochemical consequences of activation of CD3 or CD28. To molecularly characterize receptor-activated proximal signaling events, tyrosine-phosphorylated proteins co-precipitating with a Grb2 fusion protein after receptor activation were analyzed. Ligation of CD28, but not other costimulatory molecules, induced the tyrosine phosphorylation of two previously identified Grb2 binding proteins (pp76 and pp116). A third Grb2 binding protein (pp36) was extensively tyrosine phosphophorylated in response to combined CD3 and CD28 activation, but not in response to ligation of either receptor alone. cAMP and co-ligation of CD45 affected the receptor-activated tyrosine phosphorylation of Grb2-associated proteins. Furthermore, we demonstrated that two signaling molecules, Vav and phosphatidylinositol 3'-kinase (PI(3)K), also interacted with the Grb2 protein complex. The activity of PI(3)K was required for T cell activation, because wortmannin, a PI(3)K inhibitor, blocked T cell proliferation and cytokine production induced by ligation of CD3 and CD28. In conclusion, we demonstrate that in activated human T cell clones, the composition of Grb2 protein complex is modulated by costimulatory signals and cAMP, which may be important for the regulation of intracellular signal transduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.