Abstract

In synaptosomal brain membranes, the addition of oleic acid (cis), elaidic acid (trans), and the cis and trans isomers of vaccenic acid, at a concentration of 0.87 mumol of lipid/mg of protein, strongly reduced the Bmax and, to a lesser degree, the binding affinity of the mu-selective opioid [3H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol ([3H]DAMGO). At comparable membrane content, the cis isomers of the fatty acids were more potent than their trans counterparts in inhibiting ligand binding and in decreasing membrane microviscosity, both at the membrane surface and in the core. However, trans-vacenic acid affected opioid receptor binding in spite of just marginally altering membrane microviscosity. If the receptors were uncoupled from guanine nucleotide regulatory protein, an altered inhibition profile was obtained: the impairment of KD by the fatty acids was enhanced and that of Bmax reduced. Receptor interaction of the delta-opioid [3H](D-Pen2,D-Pen5)enkephalin was modulated by lipids to a greater extent than that of [3H]DAMGO: saturable binding was abolished by both oleic and elaidic acids. The binding of [3H]naltrexone was less susceptible to inhibition by the fatty acids, particularly in the presence of sodium. In the absence of this cation, however, cis-vaccenic acid abolished the low-affinity binding component of [3H]naltrexone. These findings support the membrane model of opioid receptor sequestration depicting different ionic environments for the mu- and delta-binding sites. The results of this work show distinct modulation of different types and molecular states of opioid receptor by fatty acids through mechanisms involving membrane fluidity and specific interactions with membrane constituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.