Abstract

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin (NT) family, is emerging as a key mediator of activity-dependent modifications of synaptic strength in the central nervous system. Because of the well-established role of post-synaptic elevations in concentrations of free Ca2+ ions ([Ca2+]i) in synaptic plasticity, we investigated the hypothesis that BDNF exerts its neuromodulatory effects on hippocampal pyramidal neurons by enhancing dendritic [Ca2+]i transients mediated by voltage-dependent Ca2+ channels (VDCCs) during the firing of back-propagating action potentials. Simultaneous whole-cell recording and microfluorometric Ca2+ imaging were performed in CA1 pyramidal neurons from hippocampal organotypic slice cultures treated with BDNF for 2–4 days in vitro. Our observations indicate that long-term exposure to BDNF does not affect [Ca2+]i transients in apical dendrites mediated by influx through L-type VDCCs during trains of back-propagating action potentials evoked by direct depolarizing current injections. These results suggest that, despite BDNF’s profound effects on hippocampal synaptic plasticity, and of L-type Ca2+ channels on neuronal gene transcription, the role of BDNF in cellular models of hippocampus-dependent learning and memory does not involve modulation of voltage-gated dendritic Ca2+ signaling mediated by L-type channels in apical dendrites of CA1 pyramidal neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.