Abstract
Leishmania genus protozoan parasites have developed various strategies to overcome host cell protective mechanisms favoring their survival and propagation. Recent findings in the field propose a new player in this infectious strategy, the Leishmania exosomes. Exosomes are eukaryotic extracellular vesicles essential to cell communication in various biological contexts. In fact, there have been an increasing number of reports over the last 10 years regarding the role of protozoan parasite exosomes, Leishmania exosomes included, in their capacity to favor infection and propagation within their hosts. In this review, we will discuss the latest findings regarding Leishmania exosome function during infectious conditions with a strong focus on Leishmania-host interaction from a mammalian perspective. We also compare the immunomodulatory properties of Leishmania exosomes to other parasite exosomes, demonstrating the conserved, important role that exosomes play during parasite infection.
Highlights
Leishmaniasis is a complex pattern of diseases caused by sand fly-transmitted Leishmania sp
Additional investigation from our lab has demonstrated how Leishmania parasites, like the majority of eukaryotic cells and other protozoan parasites, release extracellular vesicles (EVs) that play a key role in macrophage modulation
In our study, we found that temperature shift (TS) mimicking the conditions for inoculation of Leishmania into its host was sufficient to cause a rapid and important augmentation in protein release from the Leishmania parasite in culture alongside a clear increase of exosome-like vesicles being released from the parasites’ surface
Summary
Leishmaniasis is a complex pattern of diseases caused by sand fly-transmitted Leishmania sp. Additional investigation from our lab has demonstrated how Leishmania parasites, like the majority of eukaryotic cells and other protozoan parasites, release extracellular vesicles (EVs) that play a key role in macrophage modulation. These cellular entities are a vehicle for biologically active macromolecules, such as proteins and nucleic acids, which, once delivered, act on the physiology and function of host cells. Demonstration of the majority of the aforementioned methods of interaction came from experiments performed in vitro; as such, the mechanisms taking place in vivo are still in question
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.