Abstract

Activation of seven-transmembrane G-protein coupled receptor (GPCR) mediates extracellular signals into intracellular responses. G-protein coupled receptor 55 (GPR55) is one of GPCRs and activated by endogenous cannabinoids. A family of regulators of G-protein signaling (RGS) stimulates GTP hydrolysis of alpha subunit of G-protein (Gα) and inhibits GPCR/Gα-mediated signaling. RGS2 is member of R4 RGS family and mainly attenuates GPCR/Gαq signaling. Although RGS2 is known to modulate some GPCR signaling, the specific effects of RGS2 on GPR55-mediated signaling are not fully understood at present. Previously, we reported some RGS proteins interact with protease-activated receptors, one of GPCRs, and modulate their functions. Here, we investigated whether GPR55 interacts with RGS2, employing bioluminescence resonance energy transfer and co-immunoprecipitation analyses. Interestingly, GPR55 interacted with RGS2 alone and also formed a ternary complex with RGS2 and either Gαq or Gα12. In the presence of GPR55 alone and together with Gαq or Gα12, RGS2 translocated from the cytoplasm to plasma membrane while RGS1 remained in the cytoplasm. GPR55 activation significantly induced ERK phosphorylation and intracellular calcium mobilization, which were markedly inhibited by RGS2 in HCT116 colon cancer cell line. Furthermore, GPR55-mediated cell proliferation and migration of HCT116 cells, was significantly attenuated by RGS2. Our collective findings highlight a novel physiological function of RGS2, supporting its utility as a therapeutic target to control GPR55-induced pathophysiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.