Abstract
Fibroblast growth factor (FGF)-23 and calcium-sensing receptor (CaSR) have previously been postulated to be parts of a negative feedback regulation of the intestinal calcium absorption to prevent excessive calcium uptake and its toxicity. However, the underlying mechanism of this feedback regulation remained elusive, especially whether it required transcription of FGF-23. Herein, we induced calcium hyperabsorptive state (CHS) by exposing intestinal epithelium-like Caco-2 monolayer to 30 mM CaCl2 and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] after which FGF-23 mRNA levels and transepithelial calcium flux were determined. We found that CHS upregulated FGF-23 transcription, which was reverted by CaSR inhibitors (Calhex-231 and NPS2143) but without effect on CaSR transcription. Although 10 nM 1,25(OH)2D3 was capable of enhancing transepithelial calcium flux, the higher-than-normal calcium inundation as in CHS led to a decrease in calcium flux, consistent with an increase in FGF-23 protein expression. Administration of inhibitors (≤10 μM CN585 and cyclosporin A) of calcineurin, a mediator of CaSR action to control transcription and production of its target proteins, was found to partially prevent FGF-23 protein production and the negative effect of CHS on calcium transport, while having no effect on FGF-23 mRNA expression. Direct exposure to FGF-23, but not FGF-23 + PD173074 (FGFR1/3 inhibitor), also completely abolished the 1,25(OH)2D3-enhanced calcium transport in Caco-2 monolayer. Nevertheless, CHS and CaSR inhibitors had no effect on the mRNA levels of calcineurin (PPP3CB) or its targets (i.e., NFATc1–4). In conclusion, exposure to CHS induced by high apical calcium and 1,25(OH)2D3 triggered a negative feedback mechanism to prevent further calcium uptake. CaSR and its downstream mediator, calcineurin, possibly contributed to the regulatory process, in part by enhancing FGF-23 production to inhibit calcium transport. Our study, therefore, corroborated the physiological significance of CaSR-autocrine FGF-23 axis as a local feedback loop for prevention of excessive calcium uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.