Abstract

The topographic and mechanical characteristics of engineered tissue constructs, simulating native tissues, should benefit tissue engineering. Previous studies reported that surface topography and substrate rigidity provide biomechanical cues to modulate cellular responses such as alignment, migration and differentiation. To fully address this issue, the present study aimed to examine the influence of nanogrooved substrates with different stiffnesses on the responses of rat cardiomyocytes. Nanogrooved substrates (450 nm in groove/ridge width; 100 or 350 nm in depth) made of polystyrene and polyurethane were prepared by imprinting from polydimethylsiloxane molds. The morphology and orientation of cardiomyocytes attached to the substrates were found to be influenced mainly by the nanogrooved structures, while the contractile function of the cells was regulated by the coupled effect of surface topography and substrate stiffness. The distribution of intracellular structural proteins such as vinculin and F-actin showed that the surface topography and substrate stiffness regulated the organization of the actin cytoskeleton and focal adhesion complexes, and consequently the contractile behavior of the cardiomyocytes. The beating rates of the cultured cardiomyocytes were dependent on both the surface topography and the substrate stiffness. The study provides insights into the interaction between cardiomyocytes and biomaterials, and benefits cardiac tissue engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.