Abstract

Understanding how the chemical environment modulates the predominant conformations and kinetics of flexible molecules is a core interest of biochemistry and a prerequisite for the rational design of synthetic catalysts. This study combines molecular dynamics simulation and Markov state models (MSMs) to a systematic computational strategy for investigating the effect of the chemical environment of a molecule on its conformations and kinetics. MSMs allow quantities to be computed that are otherwise difficult to access, such as the metastable sets, their free energies, and the relaxation time scales related to the rare transitions between metastable states. Additionally, MSMs are useful to identify observables that may act as sensors for the conformational or binding state of the molecule, thus guiding the design of experiments. In the present study, the conformation dynamics of UDP-GlcNAc are studied in vacuum, water, water + Mg(2+), and in the protein UDP-GlcNAc 2-epimerase. It is found that addition of Mg(2+) significantly affects the conformational stability, thermodynamics, and kinetics of UDP-GlcNAc. In particular, the slowest structural process, puckering of the GlcNAc sugar, depends on the overall conformation of UDP-GlcNAc and may thus act as a sensor of whether Mg(2+) is bound or not. Interestingly, transferring the molecule from vacuum to water makes the protein-binding conformations UDP-GlcNAc first accessible, while adding Mg(2+) further stabilizes them by specifically associating to binding-competent conformations. While Mg(2+) is not cocrystallized in the UDP-GlcNAc 2-epimerase complex, the selectively stabilized Mg(2+)/UDP-GlcNAc complex may be a template for the bound state, and Mg(2+) may accompany the binding-competent ligand conformation to the binding pocket. This serves as a possible explanation of the enhanced epimerization rate in the presence of Mg(2+). This role of Mg(2+) has previously not been described and opens the question whether "binding co-factors" may be a concept of general relevance for protein-ligand binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.