Abstract
We propose a novel technique for modulation format identification (MFI) in digital coherent receivers by applying deep neural network (DNN) based pattern recognition on signals’ amplitude histograms obtained after constant modulus algorithm (CMA) equalization. Experimental results for three commonly-used modulation formats demonstrate MFI with an accuracy of 100% over a wide optical signal-to-noise ratio (OSNR) range. The effects of fiber nonlinearity on the performance of MFI technique are also investigated. The proposed technique is non-data-aided (NDA) and avoids any additional hardware on top of standard digital coherent receiver. Therefore, it is ideal for simple and cost-effective MFI in future heterogeneous optical networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.