Abstract

Injectable drug-loaded matrices and controlled release technology offer numerous advantages over conventional dosages. Cross-linkable alginate hydrogels have been proposed for in vivo injection, but their large initial burst release of encapsulated drugs represents a limitation for the transition to the clinical phase. To reduce this effect, a new drug delivery system was prepared by combining uncross-linked, drug-loaded gelatin microbeads with cross-linkable alginate solution. Gelatin microbeads ranging from 5 to 50 µm were obtained depending on gelatin concentration, stirring rate, and emulsifying time. The release behavior of drug-loaded gelatin microbeads encapsulated within cross-linked alginate gel was characterized both at room temperature and 37°C and compared with the release from gelatin microbeads and cross-linked alginate gel alone. Gelatin microbeads reduced the initial burst release of fluorescein from cross-linked alginate matrix, with a corresponding decrease in the release efficiency. Burst release in the first 2 h was reduced from 30% to about 5%, while cumulative release at 37°C declined from about 95% to 50% after 7 days. This system represents a promising approach for the development of novel and versatile injectable drug delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.