Abstract

Microgels with embedded binuclear copper(II) complex were prepared in the presence of galactose and mannose as biomimetic catalysts for the hydrolysis of glycosidic bonds. The study was designed to elucidate matrix effects responsible for the high catalytic proficiency (kcat/KM × knon) of the microgels that reaches up to 1.7 × 106 upon hydrolysis of 4-methylumbelliferyl-β-d-mannopyranoside. The experimental results reveal differences of sugar coordination to the binuclear copper(II) complex in coordination sites, binding strength, overall geometry, and binding energies that differ by 7.1 kcal/mol and are based on experiments using UV–Vis spectroscopy and isothermal titration calorimetry. Accompanying computational analyses, based on density functional theory (DFT) at the B3LYP/m6-31G(d) level of theory, further support the experimental results of sugar coordination by suggesting plausible binding sites of sugar coordination and providing additional insight into the cause of substrate discrimination during...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.