Abstract
As a fundamental biological process, DNA replication ensures the accurate copying of genetic information. However, the impact of this process on cellular plasticity in multicellular organisms remains elusive. Here, we find that reducing the level or activity of a replication component, DNA Polymerase α (Polα), facilitates cell reprogramming in diverse stem cell systems across species. In Drosophila male and female germline stem cell lineages, reducing Polα levels using heterozygotes significantly enhances fertility of both sexes, promoting reproductivity during aging without compromising their longevity. Consistently, in C. elegans the pola heterozygous hermaphrodites exhibit increased fertility without a reduction in lifespan, suggesting that this phenomenon is conserved. Moreover, in male germline and female intestinal stem cell lineages of Drosophila, polα heterozygotes exhibit increased resistance to tissue damage caused by genetic ablation or pathogen infection, leading to enhanced regeneration and improved survival during post-injury recovery, respectively. Additionally, fine tuning of an inhibitor to modulate Polα activity significantly enhances the efficiency of reprogramming human embryonic fibroblasts into induced pluripotent cells. Together, these findings unveil novel roles of a DNA replication component in regulating cellular reprogramming potential, and thus hold promise for promoting tissue health, facilitating post-injury rehabilitation, and enhancing healthspan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.