Abstract

Type 2 diabetes is a result of derangement of homeostatic systems of metabolic control and immune defense. Increases in visceral fat and organ adipose, environmental factors and genetic predisposition create imbalances of these homeostatic mechanisms, ultimately leading to a condition in which the oxidative environment cannot be held in check. A significant imbalance between the production of reactive oxygen species and antioxidant defenses, a condition called to oxidative stress, ensues, leading to alterations in stress-signalling pathways and potentially end-organ damage. Oxidative stress and metabolic inflammation upregulate the expression pro-inflammatory cytokines, including tissue necrosis factor alpha, monocyte chemoattractant protein-1 and interleukin-6, as well as activating stress-sensitive kinases, such as c-Jun N-terminal kinase (JNK), phosphokinase C isoforms, mitogen-activated protein kinase and inhibitor of kappa B kinase. The JNK pathway (specifically JNK-1) appears to be a regulator that triggers the oxidative-inflammation cascade that, if left unchecked, can become chronic and cause abnormal glucose metabolism. This can lead to insulin resistance and dysfunction of the vasculature and pancreatic β-cell. The series of events set in motion by the interaction between metabolic inflammation and oxidative stress constitutes an ‘oxidative-inflammatory cascade’, a delicate balance driven by mediators of the immune and metabolic systems, maintained through a positive feedback loop. Modulating an oxidative-inflammation cascade may improve glucose metabolism, insulin resistance and vascular function, thereby slowing the development and progression to cardiovascular diseases and type 2 diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.