Abstract

Earlier we have developed the principle of constructing modular materials with desired properties. The aim of this work is to study the possibility of imparting bactericidal protective properties to modular materials (tissues). The experimental studies have demonstrated the possibility of combining modules containing metal carboxylates, metal nanoparticles, and enzyme nanocomplexes for multiple functionalization of the same fibrous material and/or fiber. Fibrous materials, as a result of successive application of modular formulations containing nanosized metals and enzyme nanocomplexes, to their surface acquired biocidal and antichemical protective properties. It has been established that the spray method of applying modules to the surface of the studied materials is more universal, since aerosol application makes it possible to apply liquid to any wetted material with a uniform surface layer. The bactericidal properties depended on the chosen method of fibrous material functionalization. The obtained modular fibrous materials also showed good biocatalytic characteristics with respect to various organophosphorus compounds and mycotoxins. The duration of the effect of self-disinfection and self-degassing of fibrous materials treated with modular formulations containing nanosized metals and enzyme nanocomplexes is at least 230 days. The developed materials and the method of their production can be used both in obtaining completely new fabrics for personal protective equipment and in developing new organizational, technical and methodological approaches to ensuring personal protection of personnel of the Armed Forces of the Russian Federation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.