Abstract

Amino acids find various applications in biotechnology in view of their importance in the food, feed, pharmaceutical, and personal care industries as nutrients, additives, and drugs, respectively. For the large-scale production of amino acids, microbial cell factories are widely used and the development of amino acid-producing strains has mainly focused on prokaryotes Corynebacterium glutamicum and Escherichia coli. However, the eukaryote Saccharomyces cerevisiae is becoming an even more appealing microbial host for production of amino acids and derivatives because of its superior molecular and physiological features, such as amenable to genetic engineering and high tolerance to harsh conditions. To transform S. cerevisiae into an industrial amino acid production platform, the highly coordinated and multiple layers regulation in its amino acid metabolism should be relieved and reconstituted to optimize the metabolic flux toward synthesis of target products. This chapter describes principles, strategies, and applications of modular pathway rewiring in yeast using the engineering of l-ornithine metabolism as a paradigm. Additionally, detailed protocols for in vitro module construction and CRISPR/Cas-mediated pathway assembly are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.