Abstract

AbstractBio/artificial hybrid nanosystems based on biological matter and synthetic nanoparticles (NPs) remain a holy grail of materials science. Herein, inspired by the well‐defined metal–organic framework (MOF) with diverse chemical diversities, the concept of “armored red blood cells” (armored RBCs) is introduced, which are native RBCs assembled within and protected by a functional exoskeleton of interlinked MOF NPs. Exoskeletons are generated within seconds through MOF NP interlocking based on metal‐phenolic coordination and RBC membrane/NP complexation via hydrogen‐bonding interactions at the cellular interface. Armored RBC formation is shown to be generalizable to many classes of MOF NPs or any NPs that can be coated by MOF. Moreover, it is found that armored RBCs preserve the original properties of RBCs (such as oxygen carrier capability and good ex ovo/in vivo circulation property) and show enhanced resistance against external stressors (like osmotic pressure, detergent, toxic NPs, and freezing conditions). By modifying the physicochemical properties of MOF NPs, armored RBCs provide the capability for blood nitric oxide sensing or multimodal imaging. The synthesis of armored RBCs is straightforward, reliable, and reversible and hence, represent a new class of hybrid biomaterials with a broad range of functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.