Abstract

Carboxymethylcellulose (CMC) and xanthan gum were studied as dispersants for microfibrillated cellulose (MFC) suspension using a rotational rheometer and imaging methods. The imaging was a combination of photography and optical coherence tomography (OCT). Both polymers dispersed MFC fibers, although CMC was more effective than xanthan gum. The negatively charged polymer chains increased the viscosity of the suspending medium and acted as buffers in between the negatively charged fibers. This behavior decreased the number and strength of contacts between the fibers and subsequently dispersed the flocs. The stronger separation of the fibers was reflected in the frequency sweep where the MFC/polymer suspensions had lower gel strength than pure MFC suspension. Dispersing effect was also observed in the flow measurements, where the floc size was more uniform with polymers in the decelerating flow and after long, slow constant shear, which normally induces a heterogeneous structure with large flocs into the MFC suspension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.