Abstract
Optimal process operation is carried out by a Real-Time Optimization (RTO) layer which is not always able to achieve its targets due to the presence of plant-model mismatch. To overcome this issue, the economic optimization problem solved in the RTO is changed following the Modifier Adaptation methodology (MA), which uses plant measurements to find a point that satisfies the necessary optimality conditions (NCO) of an uncertain process. MA proceeds by iteratively adjusting the optimization problem with first and zeroth order corrections, calculated from steady-state information at each RTO execution. This implies a long convergence time. This paper presents a new method based on a recursive identification algorithm to estimate process gradients from transient measurements to speed up the convergence of MA. The proposed approach is implemented in a simulated depropanizer column that incorporates a simplified model in the RTO, reducing by 8 the convergence time compared with traditional MA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.