Abstract

In this study, silica xerogel was synthesized from groundnut hull ash using sol−gel method. Amorphous silica xerogel showed promising properties such as high thermal stability, low thermal conductivity and bulk density. Agglomerations in silica xerogel were observed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses. To provide homogeneous dispersion of silica xerogel, modification process was carried out using tetrabutylammonium bromide (TBAB). Good interfacial interaction between modified silica xerogel and epoxy had synergistic effects on properties of epoxy nanocomposites. Epoxy nanocomposites including modified silica xerogel exhibited lower water sorption and higher corrosion resistance than that of silica xerogel. Char residue of neat epoxy was increased from 15.3% to 18.0% with 2 wt% modified silica xerogel as per thermogravimetric analyses (TGA). Epoxy nanocomposite including 2 wt% modified silica xerogel was classified as V−0. Thermal conductivity of neat epoxy was reduced to 0.22 W/(m K) with modified silica xerogel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.