Abstract

The state-estimation and optimal control of multigeneration systems are challenging for wide-area systems having numerous distributed automatic voltage regulators (AVR). This paper proposes a modified Q-learning method and algorithm that aim to improve the convergence of the approach and enhance the dynamic response and stability of the terminal voltage of multiple generators in the experimental Western System Coordinating Council (WSCC) and large-scale IEEE 39-bus test systems. The large-scale experimental testbed consists of a six-area, 39-bus system having ten generators that are connected to ten AVRs. The implementation shows promising results in providing stable terminal voltage profiles and other system parameters across a wide range of AVR systems under different test scenarios including N-1 contingency and fault conditions. The approach could provide significant stability improvement for wide-area systems as compared to the implementation of conventional methods such as using standalone AVR and/or power system stabilizers (PSS) for the wide-area control of power systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.