Abstract
AbstractThe modified poly(vinylidene fluoride) (PVDF) hollow fiber composite membranes reinforced by hydroxyapatite (HAP) nanocrystal whiskers were fabricated with wet‐spinning method. The PVDF/HAP/N‐methyl‐2‐pyrrolidone dope solutions experienced delayed demixing mechanism, and the precipitation rate slightly increased as the HAP whisker content increased. The cross sections of PVDF‐HAP and neat PVDF hollow fiber composite membranes were composed of five distinct layers: two skin layers, two finger‐like sublayers, and a sponge‐like layer. The Young's modulus of and tensile strength of the PVDF‐HAP hollow fiber membranes gradually increased with the addition of nano‐HAP whiskers. The elongation ratio was also improved, which was different from the polymeric membranes modified by other inorganic nanofillers. The permeation flux of the PVDF‐HAP hollow fiber membranes slightly increased with the increase of HAP content in the composite membranes as its hydrophilicity was improved. The crystallization behaviors of PVDF in the composite membranes were also investigated. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.