Abstract
MgO/Ag nanoparticles (NPs) were surface-modified with titanate coupling agent titaniumtriisostearoylisopropoxide (NDZ-130). A new antibacterial biofilm for food packaging was synthesized by combining the modified MgO/Ag NPs with poly (butylene succinate-co-terephthalate) (PBST). The modification improved the compatibility between the MgO/Ag NPs and the PBST matrix. The effects of the modified MgO/Ag NPs on biofilm mechanical, barrier, thermal, antibacterial and food preservation properties were evaluated. Compared with the PBST/MgO/Ag composite film, the modified PBST/MgO/Ag composite film showed an increase in tensile strength (TS) of 8.71% and elongation at break (EB) of 16.66%, additionally decreasing water vapor permeability (WVP) by 42.86%. The composite film also exhibited over 95% inhibition of Staphylococcus aureus and Escherichia coli. The modified PBST/MgO/Ag composite film avoided microbial contamination and preserved cherry tomatoes while maintaining moisture and firmness for six days. All results indicated that the prepared biofilms have a high potential for use as food packaging films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.