Abstract

Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{\rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically also predict deviations from general relativity in the propagation of GWs across cosmological distances, even in theories where the speed of gravity is equal to $c$. We find that, in generic modified gravity models, the effect of modified GW propagation dominates over that of $w_{\rm DE}(z)$, making modified GW propagation a crucial observable for dark energy studies with standard sirens. We present a convenient parametrization of the effect in terms of two parameters $(\Xi_0,n)$, analogue to the $(w_0,w_a)$ parametrization of the dark energy equation of state, and we give a limit from the LIGO/Virgo measurement of $H_0$ with the neutron star binary GW170817. We then perform a Markov Chain Monte Carlo analysis to estimate the sensitivity of the Einstein Telescope (ET) to the cosmological parameters, including $(\Xi_0,n)$, both using only standard sirens, and combining them with other cosmological datasets. In particular, the Hubble parameter can be measured with an accuracy better than $1\%$ already using only standard sirens while, when combining ET with current CMB+BAO+SNe data, $\Xi_0$ can be measured to $0.8\%$ . We discuss the predictions for modified GW propagation of a specific nonlocal modification of gravity, recently developed by our group, and we show that they are within the reach of ET. Modified GW propagation also affects the GW transfer function, and therefore the tensor contribution to the ISW effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.