Abstract

A simple NaOH treatment method was developed for fabricating nonwoven fibrous matrices of polyethylene terephthalate (PET) with predictable porosity, pore size, and fiber diameter. Matrices with various porosities (90–97%), fiber diameters (13.5–25 μm), and pore sizes (54–65 μm) were prepared by treating with 1N NaOH at 70 °C for up to 120 h, resulting in up to 70% hydrolysis of the PET polymer. The hydrolysis of PET polymer by NaOH was found to follow a second-order kinetics with respect to the fiber surface area. Accordingly, mathematical models were developed to predict matrix porosity, fiber diameter, and apparent pore size of the PET matrices. The exponential decay coefficient of PET polymer was found to be 0.0147 h −1. The matrices were used to study the effects of pore size and fiber diameter on cell seeding and proliferation. The seeding study demonstrated that cell adhesion on PET fibers can be enhanced, largely due to the increased surface roughness of the PET fibers. Decreasing the fiber diameter increases the surface curvature of the fibers and decreases available surface area for cell attachment, which, however, only resulted in a small decrease in the cell growth rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.