Abstract

In this study, performance of braid reinforced hollow fiber membrane containing polyvinylidene fluoride (PVDF) embedded with tungsten trioxide (WO3) nanosheets in a membrane bioreactor (MBR) was examined for textile wastewater treatment. The WO3 nanosheets was synthesized and blended at different concentrations (0.1–0.02 wt%) in casting solutions of the membranes. The WO3 nanosheets characterized using various tests such as XRD, FTIR, SEM, EDS, dot-mapping, and TEM. Furthermore, the effects of the increased WO3 nanosheets into the PVDF matrix on the membrane morphology, hydrophilicity, permeability, antifouling, and COD and color removal efficiency was investigated. The addition of 0.1 wt% of the nanosheets reduces the water contact angle from 69.3° to 62.5° while increasing overall porosity from 37.5 to 43.2%. COD and color removal for PVDF/0.10 wt% WO3 membrane was between 86-89% and 72–76%, respectively. While the TMP of modified WO3 membranes did not significantly increase due to antimicrobial properties of the WO3 nanosheets, the TMP of the pure PVDF membrane increase, indicating considerable cake layer fouling. The results of this study showed that modification of PVDF braid reinforced hollow fiber membrane using WO3 nanosheets is promising membrane for MBR systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.