Abstract

AbstractCaCO3–polyethylene (PE) compositions, containing an ultrahigh molecular polyethylene (UHMPE) interlayer between the filler surface and the PE matrix, were synthesized by two‐step polymerization of ethylene on a filler surface activated with a suitable catalyst. The properties of the compositions were studied depending on the molecular weight of the PE matrix and the thickness of the UHMPE intermediate layer at the filler particles. It was shown that the presence of UHMPE as an interlayer in chalk–UHMPE–PE compositions leads to an increase of plastic deformation of the materials as long as the Mw value of the PE matrix is higher than is the brittleness threshold for PE. Chalk–UHMPE–PE compositions exhibit a higher ability for plastic deformation compared to chalk–PE compositions based on a PE matrix of a molecular weight equal to the molecular weight of the total polymer phase (UHMPE–PE) in the first case. There is no improvment of the mechanical properties when the UHMPE is dispersed in the compositions and not as an interlayer between a filler and a matrix. This means that the method of polymerization filling allows one to incorporate the polymer interlayer with a desired nature and properties between a filler surface and polymer matrix in filled polyolefin compositions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 577–583, 2003

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.