Abstract
Thick (0.125 mm) sheet samples of PET were irradiated with 150 keV Cs+ ion beam with fluences in the range from 10^13 cm^-2 up to 10^16 cm^-2). Raman and UV-VIS spectroscopy measurements shown destruction of numerous bonds within the polymer – this effect intensifies with fluence. Raman spectroscopy shows the presence of amorphous graphitelike structures as the broad G band appears in the collected spectrum. The analysis of absorbance spectra also confirms formation of numerous carbon clusters leading to a formation of vast conducting structures in the modified layer of the polymer. One can observe the decrease of optical bandgap from 3.85 eV (typical for pristine PET) to 1.05 eV for the sample implanted with the highest fluence, the effect is weaker than for lighter alkali metal ions. The estimated average number of C atom in a clusters reaches in such case values close to 1100. The changes in the polymer structure lead to intense reduction of electrical sheet resistivity of the modified samples by ~ 8 orders of magnitude in the case of severely modified sample. The dependence of resistivity on temperature has also been measured. The plots of ln(σ) vs 1/T show that band conductivity or nearest neighbor hopping between conducting structures prevail in the considered case
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advances in Science and Technology Research Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.