Abstract

The low ionic conductivity of solid-state electrolytes (SSEs) and the inferior interfacial reliability between SSEs and solid-state electrodes are two urgent challenges hindering the application of solid-state sodium batteries (SSSBs). Herein, sodium (Na) super ionic conductor (NASICON)-type SSEs with a nominal composition of Na3+2xZr2–xMgxSi2PO12 were synthesized using a facile two-step solid-state method, among which Na3.3Zr1.85Mg0.15Si2PO12 (x = 0.15, NZSP-Mg0.15) showed the highest ionic conductivity of 3.54 mS∙cm−1 at 25 °C. By means of a thorough investigation, it was verified that the composition of the grain boundary plays a crucial role in determining the total ionic conductivity of NASICON. Furthermore, due to a lack of examination in the literature regarding whether NASICON can provide enough anodic electrochemical stability to enable high-voltage SSSBs, we first adopted a high-voltage Na3(VOPO4)2F (NVOPF) cathode to verify its compatibility with the optimized NZSP-Mg0.15 SSE. By comparing the electrochemical performance of cells with different configurations (low-voltage cathode vs high-voltage cathode, liquid electrolytes vs SSEs), along with an X-ray photoelectron spectroscopy evaluation of the after-cycled NZSP-Mg0.15, it was demonstrated that the NASICON SSEs are not stable enough under high voltage, suggesting the importance of investigating the interface between the NASICON SSEs and high-voltage cathodes. Furthermore, by coating NZSP-Mg0.15 NASICON powder onto a polyethylene (PE) separator ([email protected]), a 2.42 A∙h non-aqueous Na-ion cell of carbon|[email protected]|NaNi2/9Cu1/9Fe1/3Mn1/3O2 was found to deliver an excellent cycling performance with an 88% capacity retention after 2000 cycles, thereby demonstrating the high reliability of SSEs with NASICON-coated separator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.