Abstract

To make clear the relationship between strain and electronic stricture, the strain-induced √3×√3-Ag structure formed on the Ge/Si(111) surface was investigated by using scanning tunneling microscopy and angle resolved ultraviolet photoelectron spectroscopy. The compressive strain is induced by epitaxial growth of Ge on the Si(111) substrate. The interatomic spacing in the surface plane is altered with the coverage of the Ge, and the strain of the surface is also varied. The stress reaches to a maximum value when the Ge layer covers up the surface completely. The band dispersion of the two dimensional metallic state on the √3×√3-Ag surface becomes steeper with the compressive strain, which means a reduction in the effective mass. It is confirmed that the electronic states of the √3×√3-Ag surface could be modified by using the lattice strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.