Abstract

Single microwave pulses at 1.25 GHz were delivered to the head and neck of male Long-Evans rats as a prestimulus to acoustic and tactile startle. For acoustic startle, pulses averaging 0.96 μs in duration were tested with two specific absorption rate (specific absorption) ranges, 15.0–30.0 kW/kg (16.0–44.2 mJ/kg) and 35.5–86.0 kW/kg (66.6–141.8 mJ/kg), delivered 201, 101, 51, 3, and 1 ms before and 1 ms after onset of a startling noise. The low-intensity pulse did not affect peak amplitude, integral, or latency of the whole-body startle response. The high-intensity pulse at 101 and 51 ms inhibited the startle response by decreasing peak amplitude and integral; at 201 and 51 ms latency was increased. The high-intensity pulse at 1 ms enhanced the startle response by increasing peak amplitude and at 3 ms by increasing integral. For tactile startle, either microwave pulses averaging 7.82 μs in duration and 55.9–113.3 kW/kg (525.0–1055.7 mJ/kg) or 94 dB SPL clicks were delivered 157, 107, 57, and 7 ms before and 43 ms after onset of a startling air burst. The microwave pulse at 57 ms inhibited the startle response by decreasing peak amplitude; at 157, 107, 57, and 7 ms it increased latency. The microwave pulse at 43 ms after onset enhanced the startle response by increasing peak amplitude. The acoustic click at 157 and 57 ms inhibited the startle response by decreasing peak amplitude; at 157, 107, and 57 ms it increased latency. The microwave pulse inhibition and enhancement of startle were similar to previously reported effects of sensory stimuli delivered at similar lead times, indicating the possibility that action was mediated by sensory stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.