Abstract

Robust system control design and seamless transition between various modes of operation are paramount for multifunctional converters in microgrid systems. This paper proposes a control system for single-phase bidirectional PWM converters for residential power level microgrid systems which is robust and can tolerate transitions between the different modes of operation. This is achieved by means of a common inner ac current-loop. Each of the operating modes has an individually designed outer loop performing the corresponding regulation tasks, most commonly including the ac voltage and the dc voltage regulation. A modified , phase-locked loop (PLL) system is used for system-level operation with both small steady-state error and fast response; and a novel islanding detection algorithm based on PLL stability is proposed to facilitate the transition between grid-connected mode and stand-alone mode. Finally, a frequency-response based design procedure for the proposed control system is presented in detail for all operating modes, and its performance is verified experimentally using a DSP-controlled 6 kW 120 V rms (ac)/ 300 V (dc) laboratory converter prototype.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.