Abstract

Laminated sediments preserved in the anoxic inner basin of Effingham Inlet on the Pacific coast of Vancouver Island, British Columbia, Canada, yield a high-resolution sediment deposition record spanning about 6000 yr. The varying thickness of diatom/terrigenous mud varves in sediment cores from the basin can be interpreted in terms of annual changes in surface productivity and freshwater input within the inlet. Similarly, the occurrence of unlaminated mud units (homogenites) intercalated amongst the laminated sediments can be interpreted in terms of oceanic and climatic changes. These units appear to be associated with coastal upwelling events that result infrequently in highly oxygenated oceanic water penetrating to the bottom of the inner and outer basins of the inlet. The sedimentary record also contains massive and graded mud units considered to arise from debris flows and turbidity currents, some of which were probably initiated by seismic events, including a major event about 4500 14C yr BP which may be earthquake related. A total of seventeen oceanographic surveys of the inlet beginning in 1995 characterize the modern seasonal coastal upwelling regime and a unique bottom water oxygenation event which was recorded in January 1999, following a rapid transition from the strong El Niño event of 1997–98 to the moderate La Niña event of 1998–99. Circum-Pacific evidence suggests that a “regime shift” from warm to cold conditions occurred in the central northeast Pacific in the late 1990s, indicating that the coastal ocean processes influencing Effingham Inlet sedimentation are likely modified by climate-scale ocean variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.