Abstract

Aiming to investigate the changes and effects of different particle sizes of wheat A/B starch during dough fermentation, the present study reconstituted A/B starch fractions in ratios of 100:0, 75:25, 50:50, 25:75, and 0:100, further blended with gluten and subjected to slight (20 min), medium (30 min), and high (60 min) fermentation processes by yeasts. Results showed that fermentation gas production promoted gluten network extension, inducing starch granule exposure and dough surface roughness. Also, fermentation fractured protein intermolecular disulfide bonds and decreased α-helix and β-folded structure content, contributing to GMP, LPP, and SPP content decreases. Moreover, moderately increasing the B-starch ratio in the dough can improve gluten network stability, continuity, and air-holding capacity. The 25A-75B steam bread exhibited optimal processing suitability (better morphology, texture, and quality) due to its higher GMP and polymer protein content with lower free sulfhydryl and monomeric protein content. Further, conformational relationships indicated the key indicators influencing dough products' properties were free sulfhydryl content, GMP content, protein molecular weight distribution, and secondary structure. The obtained findings contributed to understanding the effect of wheat starch granule size distribution on dough processing behavior, and future targeted breeding for wheat cultivars with high B-starch content for improved fermentation pasta product qualities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.