Abstract

The aim of this study is to analyze the association between cranial variation and climate in order to discuss their role during the diversification of southern South American populations. Therefore, the specific objectives are: (1) to explore the spatial pattern of cranial variation with regard to the climatic diversity of the region, and (2) to evaluate the differential impact that the climatic factors may have had on the shape and size of the diverse cranial structures studied. The variation in shape and size of 361 crania was studied, registering 62 3D landmarks that capture shape and size variation in the face, cranial vault, and base. Mean, minimum, and maximum annual temperature, as well as mean annual precipitation, but also diet and altitude, were matched for each population sample. A PCA, as well as spatial statistical techniques, including kriging, regression, and multimodel inference were employed. The facial skeleton size presents a latitudinal pattern which is partially associated with temperature diversity. Both diet and altitude are the variables that mainly explain the skull shape variation, although mean annual temperature also plays a role. The association between climate factors and cranial variation is low to moderate, mean annual temperature explains almost 40% of the entire skull, facial skeleton and cranial vault shape variation, while annual precipitation and minimum annual temperature only contribute to the morphological variation when considered together with maximum annual temperature. The cranial base is the structure less associated with climate diversity. These results suggest that climate factors may have had a partial impact on the facial and vault shape, and therefore contributed moderately to the diversification of southern South American populations, while diet and altitude might have had a stronger impact. Therefore, cranial variation at the southern cone has been shaped both by random and nonrandom factors. Particularly, the influence of climate on skull shape has probably been the result of directional selection. This study supports that, although cranial vault is the cranial structure more associated to mean annual temperature, the impact of climate signature on morphology decreases when populations from extreme cold environments are excluded from the analysis. Additionally, it shows that the extent of the geographical scales analyzed, as well as differential sampling may lead to different results regarding the role of ecological factors and evolutionary processes on cranial morphology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.