Abstract

The explosion caused by detonation of explosive materials is followed by release of a large amount of energy. Whereby, a greater part of energy is used for rock destruction, and part of energy, in the form of seismic wave, is lost in the rock mass causing rock mass oscillation. Investigations of the character and behavior of the pattern of seismic wave indicate that the intensity and nature of the seismic wave are influenced by rock mass properties, and by blasting conditions. For evaluation and control of the seismic effect of blasting operations, the most commonly used equation is that of M.A. Sadovskii. Sadovskii’s equation defines the alteration in the velocity of rock mass oscillation depending on the distance, the quantity of explosives, blasting conditions and geological characteristics of the rock mass, and it is determined based on trial blasting for a specific work environment. Thus, this paper offers analysis of the method for determination of parameters of the rock mass oscillation equation, which are conditioned by rock mass properties and blasting conditions. Practical part of this paper includes the experimental research carried out at Majdanpek open pit, located in the northern part of eastern Serbia and the investigations carried out during mass blasting at Nepričava open pit, located in central Serbia. In this paper, parameters n and K from Sadovskii’s equation were determined in three ways—models in the given work environment. It was noted that, in practice, all three models can be successfully used to calculate the oscillation velocity of the rock masses.

Highlights

  • When the seismic wave comes across a certain point in the rock mass, it disturbs the balance of rock mass particles at that point

  • Significant property of the equation of rock mass oscillation velocity depending on the reduced distance, obtained in this paper, is as follows: if the reduced distance R from any level is increased by 1%, the oscillation velocity of the rock mass v will decrease by approximately n%

  • The parameters of the rock mass oscillation equation were determined through the application of quotient of products of the same number of reduced distances and oscillation velocities

Read more

Summary

Introduction

When the seismic wave comes across a certain point in the rock mass, it disturbs the balance of rock mass particles at that point. Intensity of the shock may be determined by measuring one of the three basic parameters that characterize oscillation of the aroused rock mass, and those parameters are: displacement of the rock mass particles, oscillation velocity of the rock mass particles and acceleration of the aroused environment. Sizes of these three parameters point to the intensity of the force which caused them, as well as to the degree of danger caused by the shock. The parameter that is most often applied to estimate seismic effect of the blasting is the oscillation velocity of the rock mass.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.