Abstract

Purpose– The purpose of this paper is to assess and compare the forecast ability of existing credit risk models, answering three questions: Can these methods adequately predict default events? Are there dominant methods? Is it safer to rely on a mix of methodologies?Design/methodology/approach– The authors examine four existing models: O-score, Z-score, Campbell, and Merton distance to default model (MDDM). The authors compare their ability to forecast defaults using three techniques: intra-cohort analysis, power curves and discrete hazard rate models.Findings– The authors conclude that better predictions demand a mix of models containing accounting and market information. The authors found evidence of the O-score's outperformance relative to the other models. The MDDM alone in the sample is not a sufficient default predictor. But discrete hazard rate models suggest that combining both should enhance default prediction models.Research limitations/implications– The analysed methods alone cannot adequately predict defaults. The authors found no dominant methods. Instead, it would be advisable to rely on a mix of methodologies, which use complementary information.Practical implications– Better forecasts demand a mix of models containing both accounting and market information.Originality/value– The findings suggest that more precise default prediction models can be built by combining information from different sources in reduced-form models and combining default prediction models that can analyze said information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.