Abstract

This paper presents theoretical foundations of global Krylov subspace methods for model order reductions. This method is an extension of the standard Krylov subspace method for multiple-inputs multiple-outputs (MIMO) systems. By employing the congruence transformation with global Krylov subspaces, both one-sided Arnoldi and two-sided Lanczos oblique projection methods are explored for both single expansion point and multiple expansion points. In order to further reduce the computational complexity for multiple expansion points, adaptive-order multiple points moment matching algorithms, or the so-called rational Krylov space method, are also studied. Two algorithms, including the adaptive-order rational global Arnoldi (AORGA) algorithm and the adaptive-order global Lanczos (AOGL) algorithm, are developed in detail. Simulations of practical dynamical systems will be conducted to illustrate the feasibility and the efficiency of proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.