Abstract
The single-celled ancestors of multi-cellular animals (metazoans) did not need to transport nutrients between cells, but this ability is vital for modern animals. How could intercellular nutrient transport have begun? And how did this influence the early evolution of animals? In this hypothesis, I suggest that nutrients could have passed directly between the cytoplasm of conjoined cells in early compacted cell-balls, along the plane of the closed epithelium. This would have limited early animals to the size and form of modern embryos. The mechanisms that indirectly transport nutrients between discrete cells, via the extracellular fluid within the body-space, are modelled to have evolved sequentially; so comparison of nutrient transport processes could provide evidence of any early divergences of phyla. When the last of the indirect intercellular transport processes for essential nutrients had been developed, the extracellular fluid within the body-space would have contained all necessary nutrients. Then the epithelium could have greatly expanded, and cells lived and divided within the body-space. This development of nutrient transport processes would have enabled animals to greatly increase in size and complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.