Abstract

Arsenic is among the most hazardous contaminants present in drinking water. Recent increase in agricultural growth and fertiliser use in India and Bangladesh has led to the release of naturally occurring arsenic from the rocks, creating a major public health issue. A novel technology has been developed using naturally abundant laterite soil to filter arsenic, providing potable water to more than 5000 people. To upscale this technology and realise its full potential, a comprehensive understanding of the dependence of filter life on operating regime (flow rate, arsenic concentration and filter size) is essential. We present a mathematical model that characterises arsenic removal, circumventing the need for time-consuming experiments. The model incorporates inter- and intra-particle mass transport within the filter medium. The resulting model enables prediction of a filter lifetime in a specified role, such as on a domestic or community scale, and should assist in future filter deployment and maintenance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.